
Variables

Key Terms

• variables
• declaration
• type
• integer

Overview
A variable is a storage container for data that is capable of holding different values
that may change or update as programs execute. Your program can read the contents
of a variable, update the contents of a variable, and display the value of a variable on
the screen. Computer programs can use variables in order to remember useful informa-
tion that the programs can then use later in the code.

Declaring and Setting Variables
The first step to using a variable in C is to let your program know that
you want the variable to exist. This step is called the variable's declara-
tion (also known as initialization). In C, this is done by first specifying the
variable's type, which tells the program what kind of information will be
stored inside of the variable, and then by specifying the variable's name
(followed by a semicolon to end the programming statement).

For instance, in line 1 to the left, we've declared a new variable of type
int to be named count. An int is a data type which stores an integer,
which could be positive whole numbers, negative whole numbers, or
zero (but not fractions or decimals). Currently, no value has been as-
signed to count: we've just told the program to create a space within
which values can be stored later.

This is CS50.© 2018

Variables from User Input
In many cases, a program may need to take input from the
user and store the input as a variable. CS50 has written sev-
eral functions (declared in a file called cs50.h) that serve this
very purpose.

For instance, get_int("prompt_string") prompts the user to
input an integer. In the program to the right, line 6 uses get_
int() to take in an integer as input from the user with the
prompt "Integer please:", and saves that integer in a variable
called i.

1 int count;
count

2 count = 2;
count

2

3 count = 8;
count

8

4 int x = count;
x

8

Once a variable has been declared, it can be manipulated in various ways. Line 2 takes the variable count and as-
signs its value to be 2. Now, the number 2 is stored inside of the variable count. Optionally, we could have com-
bined lines 1 and 2 into a single programming statement to declare a variable and set its value at the same time,
via a line of code such as: int count = 2;.

After a variable has been given a value, its value can be updated. Line 3 updates the value of count again, this
time to be 8. Now, count forgets the number 2 and remembers the number 8 instead.

The value of a variable can be accessed just by using its name. For instance, line 4 declares a new variable (also
of type int) this time named x, and initially sets its value to be count. This tells your program to go to the count
variable, see what value is inside, and set the value of x to be that value. Since the current value of count is 8, the
value of x is set to also be 8.

count

8

1 #include <cs50.h>
2 #include <stdio.h>
3
4 int main(void)
5 {
6 int i = get_int("Integer please: ");
7 printf("i is %i \n", i);
8 }

CS50

Line 7 then displays the value of the variable on the screen. The %i in the string is a special syntax which acts as
a placeholder for an integer. We tell printf what integer to use in that placeholder by passing it an additional
argument, where an argument is just a value inside of the parentheses of a function. Inside of the parentheses
next to printf we've included two arguments: the string "i is %i", and the integer i, which will take the place
of %i. If the user were to enter the number 28 as input on line 6, then line 7 would replace %i with the value of i
(which is 28) and display the string "i is 28" on the screen followed by a new line denoted by the \n.

