
Typecasting

Key Terms

• typecasting
• explicit
 typecasting
• implicit
 typecasting

Overview
Recall that C has several different data types, including ints, floats, and chars. It may
sometimes be necessary to convert variables from one data type to another data type.
C allows us to do this via typecasting (or just "casting"). Typecasting allows you to cast
data from one type to another type which is equally or less precise, but you cannot
cast data from a type that is less precise to a type that is more precise.

Chars and Ints
The ASCII standard, as you may recall, gives every letter a unique
number to identify it: capital A is represented by the number 65,
capital B by 66, and so on. Using typecasting, we can convert be-
tween integer values and char values.

Say, for instance, that we assigned an integer variable x to hold the
value 65. If we were to print the variable out on the screen (like on
line 6 of the code to the left), then it would display the number 65
to the console.

On line 7, however, we've included a placeholder for a char instead
of an int (as denoted by the %c symbol). We're still passing in x
as an argument, but the code first casts x into a char. This is done
by writing (char) in parentheses before the name of the variable.
Placing a new type name in front of an existing variable to evaluate
the variable as a different type is called explicitly typecasting: we
are directly providing instructions to convert types.

This is CS50.© 2018

Ints and Floats
Typecasting is also valuable for converting between floating-point
numbers and integers. Take the example at right. On line 6, we might
want b to store the value of 28 divided by 5, which is 2.4. But line 6
actually sets b to be 2.0. This is because the compiler sees a divi-
sion between two ints, and thus presents the answer as an int, even
though we're storing the value inside of a float. To get around this, we
can first explicitly cast a to be a float, and then perform the division,
as is done on line 7. In this case, c now correctly equals 2.4.

Implicit typecasting can also be valuable when dealing with ints and
floats. Since ints do not store digits past the decimal point, type-
casting a float to an int is an easy way to truncate a number into an
integer. On line 10 to the right, when we try to assign an int to be the
floating-point value d, d is implicitly cast to be an int, getting rid of
everything after the decimal point. The value of e is now 28.

65 A

66 B

67 C

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x = 65;
6 printf("%i\n", x); // 65
7 printf("%c\n", (char) x); // A
6 }

While explicit typecasting in this situation is good practice from a style perspective (so that people reading
your code can better understand what's happening), it's not actually necessary. If we were to exclude the
(char) symbol from before the x in line 7 of the above code, the code will still print out the letter A (the ASCII
mapping of the value 65). Since we've included a placeholder for a char, the compiler is expecting a char to be
passed in. If we pass an int in, the compiler will automatically try to interpret the value as a char instead. This
is called implicit typecasting.

 1 #include <stdio.h>
 2
 3 int main(void)
 4 {
 5 int a = 28;
 6 float b = a / 5;
 7 float c = (float) a / 5;
 8
 9 float d = 28.523;
10 int e = d;
11 }

CS50

