CS50) Typecasting

Overview Key Terms

Recall that C has several different data types, including ints, floats, and chars. It may
sometimes be necessary to convert variables from one data type to another data type.

* typecasting

e . . .) * explicit
C allows us to do this via typecasting (or just "casting”). Typecasting allows you to cast X .
o . typecasting
data from one type to another type which is equally or less precise, but you cannot - sl

cast data from a type that is less precise to a type that is more precise.)
typecasting

1| #include <stdio.h> Chars and Ints

2 The ASCII standard, as you may recall, gives every letter a unique
3| int main(void) number to identify it: capital A is represented by the number 65,

4l { capital B by 66, and so on. Using typecasting, we can convert be-
5 int x = 65; tween integer values and char values.

6 printf("%i\n", x); // 65

7 printf("%c\n", (char) x); // A Say, for instance, that we assigned an integer variable x to hold the
6| } value 65. If we were to print the variable out on the screen (like on

line 6 of the code to the left), then it would display the number 65
to the console.

65 «—— A On line 7, however, we've included a placeholder for a char instead
of an int (as denoted by the %c symbol). We're still passing in x
as an argument, but the code first casts x into a char. This is done

66 < > B by writing (char) in parentheses before the name of the variable.
Placing a new type name in front of an existing variable to evaluate
67 < 3 (o the variable as a different type is called explicitly typecasting: we

are directly providing instructions to convert types.

While explicit typecasting in this situation is good practice from a style perspective (so that people reading
your code can better understand what's happening), it's not actually necessary. If we were to exclude the
(char) symbol from before the x in line 7 of the above code, the code will still print out the letter A (the ASCII
mapping of the value 65). Since we've included a placeholder for a char, the compiler is expecting a char to be
passed in. If we pass an int in, the compiler will automatically try to interpret the value as a char instead. This
is called implicit typecasting.

Ints and Floats

Typecasting is also valuable for converting between floating-point

numbers and integers. Take the example at right. On line 6, we might 1| #include <stdio.h>

want b to store the value of 28 divided by 5, which is 2.4. But line 6 2

actually sets b to be 2.0. This is because the compiler sees a divi- 3| int main(void)

sion between two ints, and thus presents the answer as an int, even 4l {

though we're storing the value inside of a float. To get around this, we 5 int a = 28;

can first explicitly cast a to be a float, and then perform the division, 6 float b = a / 5;

as is done on line 7. In this case, ¢ now correctly equals 2.4. 7 float ¢ = (float) a / 5;
8

Implicit typecasting can also be valuable when dealing with ints and 9 float d = 28.523;

floats. Since ints do not store digits past the decimal point, type- 10 int e = d;

casting a float to an int is an easy way to truncate a number into an 11| }

integer. On line 10 to the right, when we try to assign an int to be the
floating-point value d, d is implicitly cast to be an int, getting rid of
everything after the decimal point. The value of e is now 28.

© 2018 This is CS50.

