
Principles of Good Design

Key Terms

• efficiency
• magic numbers
• tradeoffs

Overview
Design is a very important aspect of programming and product development. Good
design differentiates programs that work from programs that work well. Programs
with robust, consistent, and nonrepetitive code are generally considered to be well-de-
signed. Other measures of design are program efficiency and modularization. In order
produce portable, scalable, and reusable code, we must keep design in mind while
programming.

This is CS50.© 2018

Loops and Conditionals
Loops are very powerful and often used in programming. However, as they are somewhat costly, we should make
sure we use them efficiently. We can check that we are doing so by asking ourselves the following questions: Are
each of my loops essential? Can I combine any loops? And am I taking advantage of every iteration of my loops?

Along similar lines, it’s important to use conditionals (if, else if, and else) efficiently. Consider a program that
takes in a birth month and outputs a corresponding birthstone. We could implement it by checking if the user
inputted "january", then checking if the user inputted "february", and so on until we reach "december". But, if
we already know that a user inputted "january", why bother checking any of the other months? In this case, we
could improve our program’s design by using else if statements or switch statements instead of all if statements.

CS50

Constants
Magic numbers are hard-coded constants in code. We consider using them to be bad design since they reduce
the scalability and readability of code. Furthermore, making changes to hard-coded values must be done manu-
ally. Using variables instead can facilitate making such changes. Additionally, we can use #define to define con-
stants that will not change, like the number of letters in the alphabet (26) or the value of a nickel in cents (5). We
do this at the beginning of our code with #define after our header files and outside of our main function.

Functions
It’s typically good design to break code out into functions when needed. For instance, if we were performing the
same set of mathematical operations to multiple different values, it might make sense to write the set of opera-
tions as a function and simply call that function multiple times. Similarly, it’s also a good idea to break really long
code into different files, linking between them so they can all work together smoothly. In these ways, we can
make code that could otherwise be very tedious and complicated to get through be easier to make sense of.

Tradeoffs
Design is subjective and debatable. What one program-
mer may think is better design, another might fundamen-
tally disagree with. For instance, someone could write
code using an uncommon function that makes the pro-
gram shorter and more concise. However, a person that
had never seen the function before and had to look up its
documentation could very well argue that the program
was not written clearly.

At right are two different implementations for an algo-
rithm that takes in a number of t-shirts and tells us how
many boxes we need to store them, if our options are
boxes that fit 12 shirts, 10 shirts, 3 shirts, or 1 shirt. Which
is best designed? Well, different programmers could ar-
gue in favor of either one, since each come with their own
set of tradeoffs. What do you think?

num_boxes += (shirts_left / 12);
shirts_left %= 12;
num_boxes += (shirts_left / 10);
shirts_left %= 10;
num_boxes += (shirts_left / 3);
shirts_left %= 3;
num_boxes += shirts_left;

int boxes[] = {12, 10, 3, 1};
for (int i = 0; i < 3; i++)
{
 num_boxes += (shirts_left / boxes[i]);
 shirts_left %= boxes[i];
}

