
Command-Line Interaction

Key Terms

• command-line
 arguments
• argument count
• argument vector

Overview
When running a program from the command line, you've generally executed a com-
mand like ./program_name at the command line. C also allows you to specify a pro-
gram's command-line arguments, which allows the person running the program to
pass arguments into the main function of the program by specifying the arguments
at the command line. This offers an alternative means of providing input to a program
beyond just requesting input while a program is running, such as with get_string().

argc, argv
Many of the command-line programs that you have likely called
before (make, cd, clang, mkdir) all take command-line arguments.
In C, command-line arguments are passed into the main function
as inputs. However, we've previously written our main functions to
take no arguments (void).

To accept command-line arguments, we can revise the main func-
tion to take two arguments: argc, an integer, and argv, an array of
strings.

argc, which stands for "argument count", represents the number
of arguments passed into through the command line. Each word
(separated by spaces) counts as its own argument, and the calling
of the program itself (e.g. ./hello) counts as an argument.

argv, which stands for "argument vector", is the actual array rep-
resenting the arguments themselves. Each value in the array is a
string.

If you were to look at argc and argv when calling a program with no arguments, like calling ./hello, argc
would be 1 (because the calling of the program is the only argument). argv, on the other hand, would be an
array consisting of just one element: the string "./hello" stored at index 0.

If you were to look at argc and argv when calling a program that does have arguments, like calling mkdir src,
argc would be 2, since two arguments are passed in via the command line, and argv would be an array with
two elements: the string "mkdir" stored at index 0, and the string "src" stored at index 1.

This is CS50.© 2018

Using Command Line Arguments
Shown to the right is an example of a program which accepts
command-line arguments. Notice on line 4 that the definition of
the main function has changed to include the arguments argc
and argv. No size of argv is specified on line 4, so that any array,
regardless of its size, can be passed into the main function.

Inside of main function, the program loops through the array,
starting at index 0, and incrementing so long as i < argc. It's im-
portant to stop there, because the largest index of argv that you
can access is argc - 1 (since arrays are zero-indexed). During
each iteration, the program prints out the value of argv at index i.

The result of the program is that each of the program's command
line arguments is printed on a new line.

0

./hello

./hello
argc

1

argv

1

src

0

mkdir

argvmkdir src
argc

2

clang -o hello hello.c

argc

4
1

-o

0

clang

2

hello

argv
3

hello.c

 1 #include <cs50.h>
 2 #include <stdio.h>
 3
 4 int main(int argc, string argv[])
 5 {
 6 for (int i = 0; i < argc; i++)
 7 {
 8 printf("%s\n", argv[i]);
 9 }
10 }

CS50

