@gﬁ@ Boolean Expressions

Overview Key Terms
Conditions are how programmers can make decisions in programs, by allowing some « condition
parts of the code to only run under certain circumstances. Conditions will generally .
work by evaluating a boolean expression, which is an expression that will have a value expression

of either true or false. Programmers can set conditions such that different code will
run depending on what the value of the boolean expression is.

* if statement
* switch statement
e ternary operator

1] bool a = 3 < 5 . Boolean Operators
true Boolean operators are used to create boolean expressions that
b evaluate to true or false. Commmon boolean operators include the
2| bool b = 2 >= 8; comparison operators: < (less than), » (greater than), == (equal to),
false <= (less than or equal to), >= (greater than or equal to), and != (not
equal to). For instance, in line 1 to the left, a is set to true because
3| bool ¢ = a & b; ¢ the expression 3 < 5 s true (because 3 is in fact less than 5). In line
false 2, b is set to false because the expression 2 >= 8 is not true.
4 bool d = a || b; d Logical operators can also be used to combine boolean expres-
’ true sions. && is the logical AND operator: it will evaluate to true if both
expressions on either side of it are true. || is the logical OR oper-
€ ator: it evaluates to true if at least one of the two expressions on
5| bool e = ld; false either side is true. And !, the logical NOT operator, evaluates to the
opposite of whatever the expression immediately after it is.
Conditions 1] if (x > 0)
Conditional branching refers to the idea that different parts of code 21 {
should execute under different circumstances. The most common type 3 printf("positive\n");
of conditional is the if statement: where a certain block of code (en- 41}
closed in brackets) will only run if the condition (whatever is in the pa- 5| else if (x < @)
rentheses after the word if) evaluates to true. 6| {
7 printf("negative\n");
Optionally, C also allows you to include an else block after an if state- 8| }
ment, which defines which code should run if the if condition evaluates 9| else
to false. C will also allow you to include one or multiple else if state- 10| {
ment after an if statement, to add additional conditions that could run 11 printf("zero\n");
different blocks of code. The if statement to the right (lines 1-12) will 12}
print "positive\n" if the value of x is greater than @, "negative\n" if the 13
value of x is less than @, and "zero\n" if the value of x is equal to @. 14
15| switch (x)
C also has other ways of expressing conditionals. The switch statement, 16 | {
shown to the right (lines 15-25), takes one variable, and defines what 17 case 1: L
code should run based on which case the variable matches. In the exam- 18 printf("A\n");
ple at right, if x is equal to 1, "A\n" is printed; if x is equal to 2, "B\n" is 19 break;
printed, and in all other cases (the default case), "C\n" is printed. Code 20 case 2 won s L
within cases should end with break so that the program knows to stop ;; E:;;Ef(B\n");
executing code and go to the end of the switch statement. ’
23 default:
The ternary operator is a third type of condition. The ternary operator ;g } printf("C\n");
takes an expression, and evaluates to one value if the expression is true, 26
and another value if it is false. In the example on line 28, if x > 3,y is set 27
to 2, and 1 otherwise. 28| inty = (x> 3) 2?2 : 1;

© 2018

This is CS50

